MSc Int & Prev Med	Research Design	Dr Mohammed AYAI-Amery
	iteseuren Design	5

MEANING OF RESEARCH DESIGN

The formidable problem that follows the task of defining the research problem is the preparation of the design of the research project, popularly known as the "research design". Decisions regarding what, where, when, how much, by what means concerning an inquiry or a research study constitute a research design. "A research design is the arrangement of conditions for collection and analysis of data in a manner that aims to combine relevance to the research purpose with economy in procedure."

In fact, the research design is the conceptual structure within which research is conducted; it constitutes the blueprint for the collection, measurement and analysis of data. As such the design includes an outline of what the researcher will do from writing the hypothesis and its operational implications to the final analysis of data. More explicitly, the design decisions happen to be in respect of:

- (i) What is the study about?
- (ii) Why is the study being made?
- (iii) Where will the study be carried out?
- (iv) What type of data is required?
- (v) Where can the required data be found?
- (vi) What periods of time will the study include?
- (vii) What will be the sample design?
- (viii) What techniques of data collection will be used?
- (ix) How will the data be analysed?
- (x) In what style will the report be prepared?

FEATURES OF A GOOD DESIGN

A good design is often characterized by adjectives like flexible, appropriate, efficient, economical and so on. Generally, the design which minimizes bias and maximizes the reliability of the data collected and analyzed is considered a good design.

The design which gives the smallest experimental error is supposed to be the best design in many investigations. Similarly, a design which yields maximal information and provides an opportunity for considering many different aspects of a problem is considered most appropriate and efficient design in respect of many research problems. Thus, the question of good design is related to the purpose or objective of the research problem and also with the nature of the problem to be studied.

A research design appropriate for a particular research problem, usually involves the consideration of the following factors:

- (i) the means of obtaining information;
- (ii) the availability and skills of the researcher and his staff, if any;
- (iii) the objective of the problem to be studied;
- (iv) the nature of the problem to be studied; and
- (v) the availability of time and money for the research work.

IMPORTANT CONCEPTS RELATING TO RESEARCH DESIGN

Before describing the different research designs, it will be appropriate to explain the various concepts relating to designs so that these may be better and easily understood.

1. **Dependent and independent variables**: A concept which can take on different quantitative values is called a variable. As such the concepts like weight, height, income are all examples of variables. Qualitative phenomena (or the attributes) are also quantified on the basis of the presenceor absence of the concerning attribute(s). Phenomena which can take on quantitatively different values even in decimal points are called 'continuous variables'.

*But all variables are not continuous. If they can only be expressed in integer values, they are non-continuous variables or in statistical language 'discrete variables'.

**Age is an example of continuous variable, but the number of children

is an example of non-continuous variable. If one variable depends upon or is a consequence of the other variable, it is termed as a dependent variable, and the variable that is antecedent to the dependent variable is termed as an independent variable. For instance, if we say that height depends upon age, then height is a

dependent variable and age is an independent variable. Further, if in addition to being dependent upon age, height also depends upon the individual's sex, then height is a dependent variable and age and sex are independent variables. Similarly, readymade films and lectures are examples of independent variables, whereas behavioural changes, occurring as a result of the environmental manipulations, are examples of dependent variables.

2. Extraneous variable: Independent variables that are not related to the purpose of the study, but may affect the dependent variable are termed as extraneous variables. Suppose the researcher wants to test the hypothesis that there is a relationship between children's gains in social studies achievement and their self-concepts. In this case self-concept is an independent variable and social studies achievement is a dependent variable. Intelligence may as well affect the social studies achievement, but since it is not related to the purpose of the study undertaken by the researcher, it will be termed as an extraneous variable. Whatever effect is noticed on dependent variable as a result of extraneous variable(s) is technically described as an 'experimental error'. A study must always be so designed that the effect upon the dependent variable is attributed entirely to the independent variable(s), and not to some extraneous variable or variables.

3. Control: One important characteristic of a good research design is to minimise the influence or effect of extraneous variable(s). The technical term 'control' is used when we design the study minimising the effects of extraneous independent variables. In experimental researches, the term 'control' is used to refer to restrain experimental conditions.

4. **Confounded relationship**: When the dependent variable is not free from the influence of extraneous variable(s), the relationship between the dependent and independent variables is said to be confounded by an extraneous variable(s).

5. **Research hypothesis**: When a prediction or a hypothesised relationship is to be tested by scientific methods, it is termed as research hypothesis. The research hypothesis is a predictive statement that relates an independent variable to a dependent

variable. Usually a research hypothesis must contain, at least, one independent and one dependent variable. Predictive statements which are not to be objectively verified or the relationships that are assumed but not to be tested, are not termed research hypotheses.

6. Experimental and non-experimental hypothesis-testing research: When the purpose of research is to test a research hypothesis, it is termed as hypothesis-testing research. It can be of the experimental design or of the non-experimental design. Research in which the independent variable is manipulated is termed 'experimental hypothesis-testing research' and a research in which an independent variable is not manipulated is called 'non-experimental hypothesis-testing research'. For instance, suppose a researcher wants to study whether intelligence affects reading of students and for this purpose he randomly selects 50 students and tests their intelligence and reading ability by calculating the coefficient of correlation between the two sets of scores. This is an example of non-experimental hypothesis-testing research because herein the independent variable, intelligence, is not manipulated. But now suppose that our researcher randomly selects 50 students from a group of students who are to take a course in statistics and then divides them into two groups by randomly assigning 25 to Group A, the usual studies programme, and 25 to Group B, the special studies programme. At the end of the course, he administers a test to each group in order to judge the effectiveness of the training programme on the student's performance-level. This is an example of experimental hypothesis-testing research because in this case the independent variable, viz., the type of training programme, is manipulated.

7. Experimental and control groups: In an experimental hypothesis-testing research when a group is exposed to usual conditions, it is termed a 'control group', but when the group is exposed to some novel or special condition, it is termed an 'experimental group'. In the above illustration, the Group A can be called a control group and the Group B an experimental group. If both groups A and B are exposed to special studies programmes, then both groups would be termed 'experimental groups.' It is possible

to design studies which include only experimental groups or studies which include both experimental and control groups.

8. **Treatments:** The different conditions under which experimental and control groups are put are usually referred to as 'treatments'. In the illustration taken above, the two treatments are the usual studies programme and the special studies programme. Similarly, if we want to determine through an experiment the comparative impact of three varieties of fertilizers on the yield of wheat, in that case the three varieties of fertilizers will be treated as three treatments.

9. **Experiment:** The process of examining the truth of a statistical hypothesis, relating to some research problem, is known as an experiment. For example, we can conduct an experiment to examine the usefulness of a certain newly developed drug. Experiments can be of two types viz., absolute experiment and comparative experiment. If we want to determine the impact of a fertilizer on the yield of a crop, it is a case of absolute experiment; but if we want to determine the impact of one fertilizer as compared to the impact of some other fertilizer, our experiment then will be termed as a comparative experiment. Often, we undertake comparative experiments when we talk of designs of experiments.

10. **Experimental unit(s):** The pre-determined plots or the blocks, where different treatments are used, are known as experimental units. Such experimental units must be selected (defined) very carefully.

Important Experimental Designs

Experimental design refers to the framework or structure of an experiment and as such there are several experimental designs. We can classify experimental designs into two broad categories:

- a) **Informal experimental designs** are those designs that normally use a less sophisticated form of analysis based on differences in magnitudes.
- b) **Formal experimental designs** offer relatively more control and use precise statistical procedures for analysis. Important experiment designs are as follows:
- (a) Informal experimental designs:

- (i) Before-and-after without control design.
- (ii) After-only with control design.
- (iii) Before-and-after with control design.
- (b) Formal experimental designs:
- (i) Completely randomized design (C.R. Design).
- (ii) Randomized block design (R.B. Design).
- (iii) Latin square design (L.S. Design).
- (iv) Factorial designs.

1. Before-and-after without control design: In such a design a single test group or area is selected and the dependent variable is measured before the introduction of the treatment. The treatment is then introduced and the dependent variable is measured again after the treatment has been introduced. The effect of the treatment would be equal to the level of the phenomenon after the treatment minus the level of the phenomenon before the treatment. The design can be represented thus:

Fig. 3.1

The main difficulty of such a design is that with the passage of time considerable extraneous variations may be there in its treatment effect.

2. After-only with control design: In this design two groups or areas (test area and control area) are selected and the treatment is introduced into the test area only. The dependent variable is then measured in both the areas at the same time. Treatment impact is assessed by subtracting the value of the dependent variable in the control area from its value in the test area. This can be exhibited in the following form:

The basic assumption in such a design is that the two areas are identical with respect to their behaviour towards the phenomenon considered. If this assumption is not true, there is the possibility of extraneous variation entering into the treatment effect. However, data can be collected in such a design without the introduction of problems with the passage of time. In this respect the design is superior to before-and-after without control design.

3. Before-and-after with control design: In this design two areas are selected and the dependent variable is measured in both the areas for an identical time-period before the treatment. The treatment is then introduced into the test area only, and the dependent variable is measured in both for an identical time-period after the introduction of the treatment. The treatment effect is determined by subtracting the change in the dependent variable in the control area from the change in the dependent variable in the shown in this way:

This design is superior to the above two designs for the simple reason that it avoids extraneous variation resulting both from the passage of time and from noncomparability of the test and control areas. But at times, due to lack of historical data, time or a comparable control area, we should prefer to select one of the first two informal designs stated above.

4. Completely randomized design (C.R. design): Involves only two principles viz., the principle of replication and the principle of randomization of experimental designs. It is the simplest possible design and its procedure of analysis is also easier. The essential characteristic of the design is that subjects are randomly assigned to experimental treatments (or vice-versa). For instance, if we have10 subjects and if we wish to test 5 under treatment A and 5 under treatment B, the randomization process gives every possible group of 5 subjects selected from a set of 10 an equal opportunity of being assigned to treatment A and treatment B. One-way analysis of variance (or one-way ANOVA)* is used to analyse such a design. Even unequal replications can also work in this design. It provides maximum number of degrees of freedom to the error. Such a design is generally used when experimental areas happen to be homogeneous. Technically, when all the variations due to uncontrolled extraneous factors are included under the heading of chance variation, we refer to the design of experiment as C.R. design. We can present a brief description of the two forms (Fig 3.4).

(i) **Two-group simple randomized design:** In a two-group simple randomized design, first of all the population is defined and then from the population a sample is selected randomly. Further, requirement of this design is that items, after being selected randomly from the population, be randomly assigned to the experimental and control groups (Such random assignment of items to two groups is technically described as principle of randomization).

Thus, this design yields two groups as representatives of the population. In a diagram form this design can be shown in this way:

Fig. 3.4: Two-group simple randomized experimental design (in diagram form) Since in the sample randomized design the elements constituting the sample are randomly drawn from the same population and randomly assigned to the experimental and control groups, it becomes possible to draw conclusions on the basis of samples applicable for the population. The two groups (experimental and control groups) of such a design are given different treatments of the independent variable. This design of experiment is quite common in research studies concerning behavioural sciences. The merit of such a design is that it is simple and randomizes the differences among the sample items. But the limitation of it is that the individual differences among those conducting the treatments are not eliminated, i.e., it does not control the extraneous variable and as such the result of the experiment may not depict a correct picture. This can be illustrated by taking an example. Suppose the researcher wants to compare two groups of students who have been randomly selected and randomly assigned. Two different treatments viz., the usual training and the specialized training are being given to the two groups. The researcher hypothesises greater gains for the group receiving specialised training. To determine this, he tests each group before and after the training, and then compares the amount of gain for the two groups to accept or reject his hypothesis. This is an illustration of the two-groups randomized design, wherein individual differences among students are being randomized. But this does not control the differential effects of the extraneous independent variables (in this case, the individual differences among those conducting the training programme

(ii) **Random replications design:** The limitation of the two-group randomized design is usually eliminated within the random replications design. In the illustration just cited above, the teacher differences on the dependent variable were ignored, i.e., the extraneous variable was not controlled. But in a random replications design, the effect of such differences are minimised (or reduced) by providing a number of repetitions for each treatment. Each repetition is technically called a 'replication'. Random replication design serves two purposes viz., it provides controls for the differential effects of the extraneous independent variables and secondly, it randomizes any individual differences among those conducting the treatments.

Fig. 3.5: Random replication design (in diagram form)

Diagrammatically we can illustrate the random replications design thus: (Fig. 3.5) From the diagram it is clear that there are two populations in the replication design. The sample is taken randomly from the population available for study and is randomly assigned to, say, four experimental and four control groups. Similarly, sample is taken randomly from the population available to conduct experiments (because of the eight

groups eight such individuals be selected) and the eight individuals so selected should be randomly assigned to the eight groups. Generally, equal number of items are put in each group so that the size of the group is not likely to affect the result of the study. Variables relating to both population characteristics are assumed to be randomly distributed among the two groups. Thus, this random replication design is, in fact, an extension of the two-group simple randomized design.

5. Randomized block design (R.B. design) is an improvement over the C.R. design. In the R.B. design the principle of local control can be applied along with the other two principles of experimental designs. In the R.B. design, subjects are first divided into groups, known as blocks, such that within each group the subjects are relatively homogeneous in respect to some selected variable. The variable selected for grouping the subjects is one that is believed to be related to the measures to be obtained in respect of the dependent variable. The number of subjects in a given block would be equal to the number of treatments and one subject in each block would be randomly assigned to each treatment.

In general, blocks are the levels at which we hold the extraneous factor fixed, so that its contribution to the total variability of data can be measured. The main feature of the R.B. design is that in this each treatment appears the same number of times in each block. The R.B. design is analysed by the two-way analysis of variance (two-way ANOVA) *technique.

Let us illustrate the R.B. design with the help of an example. Suppose four different forms of a standardised test in statistics were given to each of five students (selected one from each of the five I.Q. blocks) and following are the scores which they obtained.

	Very low I.Q.	Low I.Q.	Average I.Q.	High I.Q.	Very high I.Q.
	Student A	Student B	Student C	Student D	Student E
Form 1	82	67	57	71	73
Form 2	90	68	54	70	81
Form 3	86	73	51	69	84
Form 4	93	77	60	65	71

C		2	6
	5		0

If each student separately randomized the order in which he or she took the four tests (by using random numbers or some similar device), we refer to the design of this experiment as a R.B. design.

The purpose of this randomization is to take care of such possible extraneous factors (say as fatigue) or perhaps the experience gained from repeatedly taking the test.

6. Latin square design (L.S. design) is an experimental design very frequently used in agricultural research. The conditions under which agricultural investigations are carried out are different from those in other studies for nature plays an important role in agriculture. For instance, an experiment has to be made through which the effects of five different varieties of fertilizers on the yield of a certain crop, say wheat, it to be judged. In such a case the varying fertility of the soil in different blocks in which the experiment has to be performed must be taken into consideration; otherwise the results obtained may not be very dependable because the output happens to be the effect not only of fertilizers, but it may also be the effect of fertility of soil. Similarly, there may be impact of varying seeds on the yield. To overcome such difficulties, the L.S. design is used when there are two major extraneous factors such as the varying soil fertility and varying seeds.

The Latin-square design is one wherein each fertilizer, in our example, appears five times but is used only once in each row and in each column of the design. In other words, the treatments in a L.S. design are so allocated among the plots that no treatment occurs more than once in any one row or any one column. The two blocking factors may be represented through rows and columns (one through rows and the other through columns). The following is a diagrammatic form of such a design in respect of, say, five types of fertilizers, viz., A, B, C, D and E and the two blocking factor viz., the varying soil fertility and the varying seeds.

The following diagram clearly shows that in a L.S. design the field is divided into as many blocks as there are varieties of fertilizers and then each block is again divided into as many parts as there are varieties of fertilizers in such a way that each of the fertilizer variety is used in each of the block (whether column-wise or row-wise) only once. The analysis of the L.S. design is very similar to the two-way ANOVA technique.

			FERTI	LITY	EVEL	
		1	н	ш	IV	V
	х,	Α	в	С	D	Е
	X,	в	С	D	Е	А
ifferences	X _a	С	D	E	A	в
	Х.	D	E	А	в	С
	X _s	E	Α	в	С	D

Seeds d

Fig. 3.7

The merit of this experimental design is that it enables differences in fertility gradients in the field to be eliminated in comparison to the effects of different varieties of fertilizers on the yield of the crop. But this design suffers from one limitation, and it is that although each row and each column represents equally all fertilizer varieties, there may be considerable difference in the row and column means both up and across the field. This, in other words, means that in L.S. design we must assume that there is no interaction between treatments and blocking factors. This defect can, however, be removed by taking the means of rows and columns equal to the field mean by adjusting the results.

Another limitation of this design is that it requires number of rows, columns and treatments to be equal. This reduces the utility of this design. In case of (2×2) L.S. design, there are no degrees of freedom available for the mean square error and hence the design cannot be used. If treatments are 10 or more, than each row and each column will be larger in size so that rows and columns may not be homogeneous. This may make the application of the principle of local control ineffective. Therefore, L.S. design of orders (5×5) to (9×9) are generally used.

7. Factorial designs: Factorial designs are used in experiments where the effects of varying more than one factor are to be determined. They are specially important in several economic and social phenomena where usually a large number of factors affect a particular problem. Factorial designs can be of two types: (i) simple factorial designs and (ii) complex factorial designs. We take them separately

(i) **Simple factorial designs:** In case of simple factorial designs, we consider the effects of varying two factors on the dependent variable, but when an experiment is done with more than two factors, we use complex factorial designs. Simple factorial design is also termed as a 'two-factor-factorial design', whereas complex factorial design is known as 'multifactor-factorial design.' Simple factorial design may either be a 2×2 simple factorial design, or it may be, say, 3×4 or 5×3 or the like type of simple factorial design. We illustrate some simple factorial designs as under:

Illustration 1:(2 × 2 simple factorial design).

A 2×2 simple factorial design can graphically be depicted as follows:

2 × 2 SIMPLE FACTORIAL DESIGN

Fig. 3.8

In this design the extraneous variable to be controlled by homogeneity is called the control variable and the independent variable, which is manipulated, is called the experimental variable. Then there are two treatments of the experimental variable and two levels of the control variable. As such there are four cells into which the sample is divided. Each of the four combinations would provide one treatment or experimental condition. Subjects are assigned at random to each treatment in the same manner as in a randomized group design. The means for different cells may be obtained along with the means for different rows and columns. Means of different cells represent the mean scores for the dependent variable and the column means in the given design are termed the main effect for treatments without taking into account any differential effect that is due to the level of the control variable. Similarly, the row means in the said design are termed the main effects for levels without regard to treatment. Thus, through this design we can study the main effects of treatments as well as the main effects of levels. An additional merit of this design is that one can examine the interaction between treatments and levels, through which one may say whether the treatment and levels are independent of each other or they are not so. The following examples make clear the interaction effect between treatments and levels. The data obtained in case of two (2×2) simple factorial studies may be as given in Fig. 3.9.

STUDY I DATA

		Trai	ning	
		Treatment A	Treatment B	Row Mean
Control	Level I (Low)	15.5	23.3	19.4
(Intelligence)	Level II (High)	35.8	30.2	33.0
	Column mean	25.6	26.7	

STUDY II DATA

		Trai	ning	
		Treatment A	Treatment B	Row Mean
Control	Level I (Low)	10.4	20.6	15.5
(Intelligence)	Level II (High)	30.6	40.4	35.5
	Column mean	20.5	30.5	

Fig. 3.9

All the above figures (the study I data and the study II data) represent the respective means. Graphically, these can be represented as shown in Fig. 3.10

The graph relating to Study I indicates that there is an interaction between the treatment and the level which, in other words, means that the treatment and the level are not independent of each other.

The graph relating to Study II shows that there is no interaction effect which means that treatment and level in this study are relatively independent of each other.

The 2×2 design need not be restricted in the manner as explained above i.e., having one experimental variable and one control variable, but it may also be of the type having two experimental variables or two control variables. For example, a college teacher compared the effect of the classsize as well as the introduction of the new instruction technique on the learning of research methodology.

For this purpose he conducted a study using a 2×2 simple factorial design. His design in the graphic form would be as follows:

Fig. 3.11

But if the teacher uses a design for comparing males and females and the senior and junior students in the college as they relate to the knowledge of research methodology, in that case we will have a 2×2 simple factorial design wherein both the variables are control variables as no manipulation is involved in respect of both the variables.

Illustration 2:(4 × 3 simple factorial design).

The 4×3 simple factorial design will usually include four treatments of the experimental variable and three levels of the control variable. Graphically it may take the following form

	Experimental Variable					
Control Variable	Treatment A	Treatment B	Treatment C	Treatment D		
Level I	Cell 1	Cell 4	Cell 7	Cell 10		
Level II	Cell 2	Cell 5	Cell 8	Cell 11		
Level III	Cell 3	Cell 6	Cell 9	Cell 12		

4 × 3 SIMPLE FACTORIAL DESIGN

-10	× .	1.7

This model of a simple factorial design includes four treatments viz., A, B, C, and D of the experimental variable and three levels viz., I, II, and III of the control variable and has 12 different cells as shown above. This shows that a 2×2 simple factorial design can be generalised to any number of treatments and levels. Accordingly we can name it as such and such ($-\times-$) design. In such a design the means for the columns provide the researcher with an estimate of the main effects for treatments and the means for rows provide an estimate of the main effects for the levels. Such a design also enables the researcher to determine the interaction between treatments and levels.

(ii) Complex factorial designs:Experiments with more than two factors at a time involve the use of complex factorial designs. A design which considers three or more independent variables simultaneously is called a complex factorial design. In case of three factors with one experimental variable having two treatments and two control variables, each one of which having two levels, the design used will be termed $2 \times 2 \times 2$ complex factorial design which will contain a total of eight cells as shown below in Fig. 3.13

2×2×2	COMPLEX	FACTORIAL	DESIGN
-------	---------	-----------	--------

		Experimen	ntal Variable	
	Treat	ment A	Treatm	ent B
	Control Variable 2 Level I	Control Variable 2 Level II	Control Variable 2 Level I	Control Variable 2 Level II
Control	Cell 1	Cell 3	Cell 5	Cell 7
Variable 1 Level II	Cell 2	Cell 4	Cell 6	Cell 8

-		_	_
	-	1.0	100
		-	-
	1		

In Fig. 3.14 a pictorial presentation is given of the design shown below

The dotted line cell in the diagram corresponds to Cell 1 of the above stated $2 \times 2 \times 2$ design and is for Treatment A, level I of the control variable 1, and level I of the control variable 2. From this design it is possible to determine the main effects for three variables i.e., one experimental and two control variables. The researcher can also determine the interactions between each possible pair of variables (such interactions are called 'First Order interactions') and interaction between variable taken in triplets (such interactions are called Second Order interactions). In case of a 2 $\times 2 \times 2$ design, the further given first order interactions are possible:

Experimental variable with control variable 1 (or EV × CV 1);

Experimental variable with control variable 2 (or EV × CV 2);

Control variable 1 with control variable 2 (or CV1 × CV2);

Three will be one second order interaction as well in the given design (it is between all the three variables i.e., $EV \times CV1 \times CV2$).

To determine the main effects for the experimental variable, the researcher must necessarily compare the combined mean of data in cells 1, 2, 3 and 4 for Treatment A with the combined mean of data in cells 5, 6, 7 and 8 for Treatment B. In this way the main effect for experimental variable, independent of control variable 1 and variable 2, is obtained. Similarly, the main effect for control variable 1, independent of experimental variable and control variable 2, is obtained if we compare the combined mean of data in cells 1, 3, 5 and 7 with the combined mean of data in cells 2, 4, 6 and 8 of our $2 \times 2 \times 2$ factorial design. On similar lines, one can determine the main effect for the control variable 2 independent of experimental variable and control variable 1, if the combined mean of data in cells 3, 4, 7 and 8.

To obtain the first order interaction, say, for EV × CV1 in the above stated design, the researcher must necessarily ignore control variable 2 for which purpose he may develop 2×2 design from the $2 \times 2 \times 2$ design by combining the data of the relevant cells of the latter design as shown in Fig. 3.15.

		Experimen	tal Variables
		Treatment A	Treatment B
Control	Level I	Cells 1, 3	Cells 5, 7
Variable 1	Level II	Cells 2, 4	Cells 6, 8

Fig. 3.15

Similarly, the researcher can determine other first order interactions. The analysis of the first order interaction, in the manner described above, is essentially a sample factorial analysis as only two variables are considered at a time and the remaining one is ignored. But the analysis of the second

order interaction would not ignore one of the three independent variables in case of a $2 \times 2 \times 2$ design. The analysis would be termed as a complex factorial analysis.

It may, however, be remembered that the complex factorial design need not necessarily be of $2 \times 2 \times 2$ type design, but can be generalized to any number and combination of experimental and control independent variables. Of course, the greater the number of independent variables included in a complex factorial design, the higher the order of the interaction analysis possible. But the overall task goes on becoming more and more complicated with the inclusion of more and more independent variables in our design.

Factorial designs are used mainly because of the two advantages. (i) They provide equivalent accuracy (as happens in the case of experiments with only one factor) with less labour and as such are a source of economy. Using factorial designs, we can determine the main effects of two (in simple factorial design) or more (in case of complex factorial design) factors (or variables) in one single experiment. (ii) They permit various other comparisons of interest. For example, they give information about such effects which cannot be obtained by treating one single factor at a time. The determination of interaction effects is possible in case of factorial designs.

Developing a Research Plan

After identifying and defining the problem as also accomplishing the relating task, researcher must arrange his ideas in order and write them in the form of an experimental plan or what can be described as 'Research Plan'. This is essential specially for new researcher because of the following:

(a) It helps him to organize his ideas in a form whereby it will be possible for him to look for flaws and inadequacies, if any.

(b) It provides an inventory of what must be done and which materials have to be collected as a preliminary step.

(c) It is a document that can be given to others for comment.

Research plan must contain the following items.

1. Research objective should be clearly stated in a line or two which tells exactly what it is that the researcher expects to do.

2. The problem to be studied by researcher must be explicitly stated so that one may know what information is to be obtained for solving the problem.

3. Each major concept which researcher wants to measure should be defined in operational terms in context of the research project.

4. The plan should contain the method to be used in solving the problem. An overall description of the approach to be adopted is usually given and assumptions, if any, of the concerning method to be used are clearly mentioned in the research plan.

5. The plan must also state the details of the techniques to be adopted. For instance, if interview method is to be used, an account of the nature of the contemplated interview procedure should be given. Similarly, if tests are to be given, the conditions under which they are to be administered should be specified along with the nature of instruments to be used. If public records are to be consulted as sources of data, the fact should be recorded in the research plan. Procedure for quantifying data should also be written out in all details.

6. A clear mention of the population to be studied should be made. If the study happens to be sample based, the research plan should state the sampling plan i.e., how the sample is to be identified. The method of identifying the sample should be such that generalization from the sample to the original population is feasible.

7. The plan must also contain the methods to be used in processing the data. Statistical and other methods to be used must be indicated in the plan. Such methods should not be left until the data have been collected. This part of the plan may be reviewed by experts in the field, for they can often suggest changes that result in substantial saving of time and effort.

8. Results of pilot test, if any, should be reported. Time and cost budgets for the research project should also be prepared and laid down in the plan itself.